九、大跳蚤与小跳蚤:类型论
我们不可能对无穷多个性质逐个地进行命名,但却可以通过性质的总体来对其中的一些进行描述。也就是说,当我们接触到一些未了解的性质时,没有必要每一个都进行命名,而只是根据过去掌握的知识说明这种性质在性质总体中处于何种地位,与其他性质有何类似或不同之处等。这种描述利用了性质的总体,而这种性质却是整体的一部分,因此是循环的。
罗素的另一解除悖论的方案是“加限制”的方法。这一方案罗素并没有采用,而被后来的数学家策梅罗接受。据以前的分析可知,悖论的构成中都包含了这样一前提,即任何一性质都决定一个集合,这是康托尔对集合的直观规定。那么到底什么是集合?集合是什么样的呢?人们是不甚清楚的。康托尔自己说,集合是个“无底的深渊”,而戴德金则说:“集合是一个口袋,里面装的什么可不知道了。”这样就可能出现包含问题的集合,从而带来悖论。罗素和策梅罗都认为,集合论中悖论的出现是由于使用了太大的集合,特别是大全集,即所有集合的集合。因此必须对康托尔的集合论进行限制,特别是抛弃“任何性质都决定一个集合”这一原则,因为从这一原则可立即推出大全集的存在。
策梅罗认为,他的目标就是要保留康托尔集合论中一切有价值的部分,也就是说使限制后的集合论仍能起原来的基础作用,即能由此出发而展出全部数学理论。为达此目标,他采取了把原来的直观集合论进行公理化的方法。在这里,集合成了不加定义的原始概念,它的性质由公理加以规定,即由公理直观地显示集合的特征,当然也就表明了什么是集合。例如,其中有这样一条公理:我们可以凭借任何性质由一个已知集合分出一个子集,它是由已知集合中所有那些满足这一性质的元素构成的。比如,我们可以用“在中学读书的”这一性质从已知的“人类”这一集合中分出一子集“在中学读书的人”即“中学生集”。这里也是由一性质决定一集合,但它不是任意的,而必须是由更大的已知集合中分离出,因此,它与康托尔的上述原则是不一样的。根据此公理,“所有集合的集合”、“所有子集的集合”、“所有非自状的形容词的集合”等等这些集合都不会出现。因为没有比它们更大的集合,当然也就不能由已知的集合分出这些集合。这样也就否定了悖论构成的第二个前提:即任何一个性质都决定一个集合。罗素悖论、格雷林悖论、康托尔悖论等都可以得以避免。
就已知的集合论悖论来说,其共同的特点就在于对大集合特别是大全集的承认。因此,人们普遍认为,这些悖论已不可能在策梅罗的系统中得到构造。准确点说,是不可能按照原来的方式在此系统中得到构造,因而策梅罗的公理系统为集合论悖论提供了一种可能的解决。而且,就目前的数学实践看,策梅罗的系统已为数学提供了一个合适的基础。所以,在一定的意义上说,策梅罗原来的目标已基本达到。
尽管如此,策梅罗的系统并非是十全十美的。例如,虽然此系统避免了原来所发现的悖论,而且迄今尚未遇见悖论,但是,它还不能保证将来不会出现新的悖论。因为它没有证明系统本身的无矛盾性,即本身是否包含矛盾。所以法国著名数学家彭加勒挖苦说:“我们设置栅栏保护羊群以免受到狼的袭击,但是很可能在装栅栏时,就已经有狼被围进栅栏里了。”他说的狼就是悖论,羊群就是集合论,栅栏则是策梅罗的公理集合论系统。
------------------